
A Draft about Geometric Constraints Solving

L Lamarque and D Michelucci

February 8, 2006

Abstract

Geometric Constraints Solving use graph-based methods to decompose

systems of geometric constraints. These methods have intrinsic and un-

avoidable limitations which are overcome by the witness method presented

here.

1 Introduction

Geometric Constraints Solving [Owe91, Owe96, BR98, Hof06] today pervades
all geometric modellers and geometric applications, in CAD-CAM, chemistry,
robotics, virtual reality. Geometric constraints enable the designer to specify
shapes with geometric constraints. Typical geometric constraints are specifica-
tions of distances, angles, incidences, tangencies, parallelisms, orthogonalities
between geometric elements such as points, lines, planes, conics or quadrics, or
higher degree algebraic curves and surfaces; a lot of problems in robotics (e.g.,
generalized Stewart platform), in molecular chemistry (finding the configura-
tions of a molecule from inter-atomic distances: it is the molecule problem),
in geometric modelling (e.g., blending surfaces), etc can be formulated with
geometric constraints.

Systems of geometric constraints met in industry are bigger and bigger. For
instance, geometric constraints begin to be used to define the control points
of parameterized patches in 3D: there are 48 unknown coordinates per bicubic
patch, and the simplest shape can require a dozen of such patches.

Thus decomposing such huge systems of geometric constraints into smaller
subsystems is essential for solving. Today graph base methods [Owe91, Owe96]
are used to decompose systems of geometric constraints, to planify the resolution
of subsystems and to merge their solutions. A lot of graph based methods have
been proposed; all rely more or less on a combinatorial count of degrees of
freedom (DoF); they use graph flow computations, maximum matchings, k-
connectedness properties.

These graph-based methods work very well for correct systems of constraints,
and they indeed make possible to solve systems which are untractable otherwise.
These methods are even able to detect the simplest mistakes in systems of
constraints, namely structural dependences: a typical structural dependence

1

occurs each time a subset of unknowns is constrained by too much constraints.
However, there are more subtle dependences, due to geometric theorems, which
can not be detected with pure graph-based methods. Missed dependences make
the solver fail, and the solver gives no usable explanation to the designer. This
is a real problem: the probability of such dependences increases with the size
of the systems to be solved, and with the availability and the increasing use of
geometric solvers, actually with the success of GCS.

Of course, researchers in GCS are aware of this limitation of graph-based
methods, and they agree that graph-based methods must be improved to better
detect dependences between geometric constraints.

Unfortunately, detecting dependences with pure graph-based methods is an
untractable problem (under the usual assumption that P 6= NP). It is due to
the fact that every system of algebraic equations is translatable into a system
of point-line incidences in the projective plane with a size of the same order
of magnitude. Because of this universal property of systems of point-line inci-
dences, detecting dependences between such constraints is as hard as detecting
dependences between algebraic equations; no polynomial time method is known,
and no one exists under the usual assumption that P 6= NP .

Such seemingly trivial incidence constraints between flats (points, lines,
planes) are essential in real-world problems (the molecule problem being an
exception). Thus there is no reasonable hope to make pure graph-based meth-
ods robust against subtle dependences since constraints include incidence con-
straints. However, not all is lost. It is possible to check the independence
between the geometric constraints, to decompose them, or to check that a
decomposition proposed by any other method is correct, assuming a witness
configuration is available. For CAD-CAM problems, it is typically the case:
systems of geometric constraints give a system of equations F (U,X) = 0 to
solve, where U is a vector of parameters: specified distances or angle cosines,
or non geometric values (weights, forces, costs); the value of U is known just
before resolution. A witness is a couple (V,XV) such that F (V,XV) = 0, where
V 6= U ; in other words, a witness is a solution of a variant of the system to be
solved. The witness and the target (the unknown, searched configuration) have
the same properties, the same jacobian structure.

In the interactive setting, the sketch interactively provided by the user is
often such a witness; points which must be aligned or coplanar in the solution
are already so in the sketch, and only the angles and distances in the sketch
need to be corrected by the solver. When a witness is not available (for instance
in some batch use of geometric constraint solving), a witness is most of the time
easily computable: consider the parameter U as unknowns and solve the very
under-constrained F (Y,X) = 0. While witnesses can be arbitrarily difficult to
find for some systems, due to the universality theorem, none of these systems
seems relevant for CAD-CAM.

Foufou et al introduced the witness method [FMJ05]; they imposed useless
limitations on the way to express constraints. This paper simplifies the method
and broadens its scope. It provides detailed examples.

This paper is structured as follows. Section 2 present basic notions: free in-

2

finitesimal motions, displacements and flexions, degrees of displacements, how
they are computed with rank considerations. Section 3 explains how the wit-
ness method answers to questions: are these constraints coordinates free? are
they dependent or not? what is the minimal dependent set of equations? is a
part rigid, i.e., fixed by the system up to displacement? does the witness (and
the target) have an unexpected geometric property, for instance a collinearity
between 3 points? These capabilities of the witness method, combined with de-
composition strategies of graph based methods, make possible more reliable and
robust decomposition methods. Nevertheless, section 4 presents a first decom-
position method which relies only on the witness. Section 5 argues about the
difficulty of finding a witness: on one hand, this problem can be arbitrarily diffi-
cult; on the other hand, for CAD-CAM problems we always find easily a rational
witness with rational coordinates. Section 5 also asks it is possible to ”under-
stand” equations, i.e., to decompose and solve them without the knowledge of
the underlying geometric constraints. Section 6 concludes. For completeness,
appendix 7 presents the universality theorem, some typical geometric theorems
which often confuse graph-based methods, and the molecule problem studied
by the rigidity theory.

2 Free Infinitesimal motions

2.1 Definitions and notations

Assume a witness configuration (V,XV) is known, i.e., F (V,XV) = 0. The
main idea is to compute the vector Ẋ of the free infinitesimal motions ε× Ẋ of
the witness, such that the perturbed witness XV + εẊ still fulfils the specified
constraints: F (V,XV + εẊ) = 0. With Taylor expansion, F (V,XV + εẊ) =
F (V,XV) + εF ′(V,XV)Ẋt + O(ε2). Thus F ′(V,XV)Ẋt must vanish: the free
motions are given by the kernel of the jacobian matrice F ′(V,XV) at the witness.

In all this paper, ε is just a symbol used for explanations; it is not represented
in the computer, neither by a numerical value, nor by a symbol or any other
data structure.

Free infinitesimal motions are usually classified in two classes: first infinites-
imal displacements, namely translations, rotations and their compositions; and
second infinitesimal flexions (sometimes called deformations), which deform the
configuration. Clearly, if the witness admits such an infinitesimal flexion, the
witness is flexible, i.e., the system does not determine completely the geometric
configuration.

A base of the infinitesimal displacements is computable a priori: it does not
depend on the constraints, but only on the variables. Such a base is provided
below; the infinitesimal scaling (which is not a displacement) is also provided.

There are several kinds of unknowns. We use the following conventions. In
2D, a point has coordinates (x, y); a line with equation ax + by + c = 0 is rep-
resented by a vector (a, b, c); a vector is represented by its coordinates (u, v);
this distinction between points and vectors is due to the fact that a translation

3

(including an infinitesimal translation) modifies the (x, y) of points, but it does
not modify the (u, v) of vectors, which are differences between points; similarly
translations do not modify the a, b coefficients of lines, but they modify the c co-
efficient. For displacements, the variables u, v and a, b behave the same, but not
for scaling. Other geometric unknowns (barycentric coordinates, scalar prod-
ucts, distances, squared distances, angle cosines, areas, volumes) are unchanged
by infinitesimal displacements, so the corresponding entry in all vectors of the
base are 0. The same holds for all non geometric unknowns (weights, costs,
densities, temperatures. . .).

2.2 Basis of infinitesimal displacements

In 2D, a basis for the infinitesimal displacements is tx, ty, rxy, where tx is a
translation in the x direction, ty a translation in the y direction, and rxy a

rotation around the origin. Corresponding coordinates ẋ, ẏ, ḃ, ċ, u̇, v̇ are given
in this table:

ẋ ẏ ȧ ḃ ċ u̇ v̇
tx 1 0 0 0 −a 0 0
tx 0 1 0 0 −b 0 0
rxy −y x −b a 0 −v u
s x y −a −b 0 u v

The last line s describes the infinitesimal scaling (it is not a displacement).
Similarly, in 3D, a basis for the infinitesimal displacements is tx, ty, tz, rxy, ryz, ryz,

where tz is a translation along z, ryz, rxz, rxy are rotations around the x, the y,
the z axis. Corresponding coordinates are given in this table:

ẋ ẏ ż ȧ ḃ ċ ḋ u̇ v̇ ẇ

tx 1 0 0 0 0 0 −a 1 0 0
ty 0 1 0 0 0 0 −b 0 1 0
tz 0 0 1 0 0 0 −c 0 0 1

rxy −y x 0 −b a 0 0 −v u 0
rxz −z 0 x −c 0 a 0 −w 0 u

ryz 0 −z y 0 −c b 0 0 −w v

s x y z −a −b −c 0 u v w

A simple example in 2D is this typical system of 6 equations, with generic
parameters δ (a distance) and λ (a cosine):

e1 : ax + by + c = 0

e2 : a′x + b′y + c′ = 0

e3 : (x − x′)2 + (y − y′)2 − δ2 = 0

e4 : a2 + b2 − 1 = 0

e5 : a′2 + b′2 − 1 = 0

e6 : aa′ + bb′ − λ = 0

Fig.1 shows the jacobian and a base for infinitesimal motions: three displace-
ments, and one flexion: the point (x′, y′) can rotate around the point (x, y)).

4

x y x′ y′ a b c a′ b′ c′

e′1 a b 0 0 x y 1 0 0 0

e′2 a′ b′ 0 0 0 0 0 x y 1

e′3 2(x − x′) 2(y − y′) 2(x′
− x) 2(y′

− y) 0 0 0 0 0 0

e′4 0 0 0 0 2a 2b 0 0 0 0

e′5 0 0 0 0 0 0 0 2a′ 2b′ 0

e′6 0 0 0 0 a′ b′ 0 a b 0

ẋ ẏ ẋ′ ẏ′ ȧ ḃ ċ ȧ′ ḃ′ ċ′

tx 1 0 1 0 0 0 −a 0 0 −a′

ty 0 1 0 1 0 0 −b 0 0 −b′

rxy −y x −y′ x′
−b a 0 −b′ a′ 0

flexion 0 0 y − y′ x′
− x 0 0 0 0 0 0

Figure 1: The jacobian and a base of infinitesimal motions: three displacements
and a flexion.

The reader can check that the vectors for infinitesimal motions are orthogonal
to the gradient vectors (the derivatives): e′

1
, . . . e′

6
.

We prove only the basis for 2D infinitesimal displacements, the proof in 3D
is similar. Let P = (x, y, 1) be a point in homogeneous coordinates. P lies on a
line L = (a, b, c). If a displacement represented by a matrice M maps the point
P to the point P ′ = (x′, y′, 1) = PM , and the line L to the line L′ = (a′, b′, c′),
then L′t = M−1Lt. Proof: PLt = 0 and P ′ = PM ⇒ PMM−1Lt = 0 ⇒
P ′M−1Lt = 0. Identify L′t and M−1Lt, then conclude.

For the infinitesimal translation ṫx along x:

(x′, y′, 1) = (x + ε, y, 1) = (x, y, 1)





1 0 0
0 1 0
ε 0 1





thus




a′

b′

c′



 =





1 0 0
0 1 0
−ε 0 1









a
b
c



 =





a
b

−εa + c





thus ẋ = x′ − x = εx, ẏ = y′ − y = 0, ȧ = a′ − a = 0, ḃ = b′ − b = 0,
ċ = c′ − c = −εa. Dividing by ε gives ṫx. Similarly, for the infinitesimal
translation ty along y.

For rxy, the rotation around the origin with an infinitesimal angle:

(x′, y′, 1) = (x − εy, εx + y, 1) = (x, y, 1)





1 ε 0
−ε 1 0
0 0 1





and thus




a′

b′

c′



 =





1 −ε 0
ε 1 0
0 0 1









a
b
c



 =





a − εb
b + εa

c





The difference between the identity matrice and the product of the two
matrices is in O(ε2), thus negligible in front of ε. Thus ẋ = x′ − x = −εy,

5

ẏ = y′ − y = εx, ȧ = a′ − a = −εb, ḃ = b′ − b = εa, ċ = c′ − c = 0, and dividing
by ε indeed gives rxy. Vectors (u, v) are difference between two points, and thus
(u̇, v̇) strightforwardly follows for all infinitesimal displacements. Another way
to compute a base of infinitesimal displacements is explained further.

2.3 Infinitesimal scaling

Computing the infinitesimal vector for scaling permits to detect if the propor-
tions of a part are determined by the system, in other words if the shape is deter-
mined up to scaling. Contrarily to displacements, scaling modifies the lengths,
areas, volumes and scalar products. Some systems well-constrained modulo dis-
placements (i.e., rigid) are still big and no more reducible into smaller rigid
subsystems, but they are reducible into subsystems well-constrained modulo
scaling (also called similitude). It is why infinitesimal scaling is relevant. More-
over, it highlights the difference between vectors u, v, w and normals a, b, c. The
infinitesimal scaling maps (x, y, 1) to

(x′, y′, 1) = (x, y, 1)





1 + ε 0 0
0 1 + ε 0
0 0 1



 ⇒





a′

b′

c′



 =





1 − ε 0 0
0 1 − ε 0
0 0 1









a
b
c



 =





a − εa
b − εb

c





The reader can check that the difference between the identity matrice and
the product of the two matrices is in O(ε2). Thus ẋ = εx, ẏ = εy, ȧ = −εa,
ḃ = −εb, ċ = 0, and divide by ε to simplify. If this vector is orthogonal to the
gradient vectors of all equations, then the system is invariant through similitude
(i.e., scaling).

The scaling modifies the scalar products: If p is a scalar product of two
vectors (u, v), then ṗ = 2p. If p is a scalar product of two normals (a, b), then
ṗ = −2p. If p is a scalar product of a normal (a, b) and a vector (u, v), then
ṗ = 0. The modifications for lengths, areas, follows. The extension to 3D is
straightforward.

2.4 DoD: Degrees of Displacements

C. Jermann et al [JNT03] define degrees of rigidity to try to make graph-based
methods more robust against dependences between constraints. We prefer the
name: degrees of displacements. The degree of displacements of a rigid config-
uration (a set of points, lines, planes) is the number of equations needed to fix
it in a cartesian coordinate system. The DoD is difficult to compute with pure
graph based method. Jermann et al mainly suggest formulas for big enough
configurations and a tabulation for a finite set of small configurations; moreover
the configurations need to be ”generic enough”: incidences due to geometric

6

theorems are forbidden. This restriction is needed to avoid that the universality
theorem applies.

The witness method computes straightforwardly the DoD, interrogating the
witness. It can even precise which infinitesimal displacements are dependent,
when they are. Let Y be the subset of the variables X which describes the
configuration, and D be a base of the infinitesimal displacements at the witness.
Then the DoD of Y is the rank of D[Y]. For instance, for a line (a, b, c) in 2D,
D[Y] = D[a, b, c] is:

ȧ ḃ ċ
tx 0 0 −a
ty 0 0 −b
rxy −b a 0

and D[Y] has rank 2: we can even see that it is the two translations tx and
ty which are dependent. It is correct: a translation along the line leaves it
unchanged. For the DoD of a segment Y = (x, y, z, x′y′, z′) in 3D we just
consider D[Y] in the witness:

ẋ ẏ ż ẋ′ ẏ′ ż′

tx 1 0 0 1 0 0
ty 0 1 0 0 1 0
tz 0 0 1 0 0 1
rxy −y x 0 −y′ x′ 0
rxz −z 0 x −z′ 0 x′

ryz 0 −z y 0 −z′ y′

which has rank 5; the 3 translations are independent; the three rotations are
dependent, they have rank 2; it is correct: the rotation around the line sup-
porting the segment leaves it unchanged. For the DoD of two secant planes
Y = (a, b, c, d, a′, b′, c′, d′) in 3D, we just consider D[Y] at the witness:

ȧ ḃ ċ ḋ ȧ ḃ ċ ḋ
tx 0 0 0 −a 0 0 0 −a′

ty 0 0 0 −b 0 0 0 −b′

ty 0 0 0 −c 0 0 0 −c′

rxy −b a 0 0 −b′ a′ 0 0
rxz −c 0 a 0 −c′ 0 a′ 0
ryz 0 −c b 0 0 −c′ b′ 0

It has rank 5; more precisely, the three translations have rank 2, the three
rotations are independent. The same way, we can compute the DoD of two
parallel planes. Actually the interrogation of a witness gives us the DoD of any
configuration. Absolutely no genericity assumption is required: the witness gives
the right answer even when the configuration contains incidences which result
from geometric theorems, for instance if three points are collinear due to Pappus
theorem (or Desargues, or Pascal, or whatever). This power is due to the fact
that the witness and the target share the same combinatorial properties. The
computation of the rank of a set of (numerical only) vectors solves all problems.

7

When a part has DoD 3 in 2D and 6 in 3D, we say it has full DoD. This
notion is used further for anchors.

2.5 Rank computations

To compute ranks, our program uses a variant of Gauss triangulation method:
the latter uses only operations: +,−,×,÷ and the nullity test; it does not
need a non linear operation, in contrast to the Gram-Schmit orthogonalization
procedure which needs the square root; thus Gauss method can be used in
finite fields, for instance in Z/pZ where p is a prime integer (close to 109),
with exact arithmetic; it avoids inaccuracy problems which can pose difficulty
when testing nullity, which is needed to compute the rank of a set of vectors.
Of course, this choice needs that the witness has rational coordinates (exact
algebraic arithmetic exist, but they are unconvenient and costly), and it is
only a probabilistic test: there is a small probability (1/p under reasonable
assumptions) for a non zero number to be zero modulo p; this nullity test is
crucial, it is used to detect if a vector lies in the vectorial space generated by
another set of vectors. To gain more confidence in the nullity test, we redo
the computation modulo several other primes: the probability for a non zero
rational number to be equal to zero modulo all primes p1, p2 . . . pk is (under
realistic assuptions) one over the product p1p2 . . . pk of the primes.

Another choice is to compute with floating point numbers; the witness has
floating point coordinates and need not to be rational, the square root operation
and the Gram-Schmit procedure can be used, etc; it is more confortable for
the programmer; but floating point arithmetic is not exact, and, though SVD
computations can limit inaccuracy errors, computing the rank of a set of vectors
is still problematic in case of dependence between vectors: some ε heuristic
must be used. The ε heuristic decides that a number is equal to zero when it
its absolute value is smaller than a prescribed threshold classically called ε (the
latter ε has nothing to see with the previous ε used in the expansion XV +εẊ...).

3 Witness interrogations

3.1 Are constraints coordinates-independent?

Correct geometric constraints are generally assumed to be independent of the
cartesian frame; but if users are enabled to specify constraints, they can make
mistakes. A constraint is not independent of the cartesian frame if it is not or-
thogonal to at least one of the vectors in the base of infinitesimal displacements.
For instance, in 2D, the constraint: xM = 0 is orthogonal to the vectors of the
y translation and of the rotation around the origin, but not to the vector of
the translation in x. Arbitrarily complicated equations can be tested this way.
These tests are only numerical: the witness is a numerical vector, as the base
of infinitesimal displacements in the witness. From now on, all equations are
independent of the cartesian frame.

8

xO yO xA yA xB yB xC yC
e′1 2 0 −1 0 −1 0 0 0

e′2 0 2 0 −1 0 −1 0 0

e′3 2xA − 2xC 2yA − 2y − C 2xO − 2xA 2yO − 2yA 0 0 2xC − 2xO 2yC − 2yO
e′4 0 0 xB − xA yB − yC xA − xC yA − yC 2xC − xA − xB 2yC − yA − yB
e′5 2xO − 2xA 2yO − 2yA 2xA − 2xO 2yA − 2yO 0 0 0 0

˙xO ˙yO ˙xA ˙yA ˙xB ˙yB ˙xC ˙yC
tx 1 0 1 0 1 0 1 0
ty 0 1 0 1 0 1 0 1

rxy −yO xO −yA xA −yB xB −yC xC
flexion 0 0 0 0 0 0 yO − yC xC − xO

Figure 2: A dependent system. The jacobian, and a base of 4 free infinitesimal
motions. The fourth is a flexion: point C can rotate around point O.

Figure 3: In 3D, the double banana, and three Ortuzar’s configurations.

3.2 Are constraints dependent or independent?

Are the constraints dependent or independent? Graph based methods can detect
only structural dependences, as in the system: f(x, y, z) = g(z) = h(z) =
0 which over-constrains the unknown z. Interrogation of the witness makes
possible to detect more subtle dependences –actually all dependences– as follows.

The constraints are dependent if the gradient vectors of the equations at
the witnes, i.e., the jacobian matrice at the witness, are dependent. It suffices
to compute a base of this jacobian, either with Gauss triangulation method, or
with the Gram-Schmit orthogonalization procedure, or a LU factorization, or
any other method in linear algebra (SVD for instance). All that is standard
numerical linear algebra.

Typical and simple examples of 3D configurations where the witness method
detects the dependence and the graph-based methods do not, are given in Fig.
3. The leftmost configuration is classical, and is known as the double banana.
The dependence in double banana was already detected by a classical numerical
probabilistic method [JG93], which the witness method encompasses.

It is possible to taylor pure graph-based methods to make them detect some
of these dependences (e.g., [Owe96, JNT03]). However this approach is terribly
difficult, it can result in hairy methods and software, not easily reproducible.
And, finally, the universal theorem makes untractable the problem of detecting
all dependences with pure graph-based methods. However, the knowledge and

9

skills acquired with graph-based method is not useless: decomposition strategies
in graph-based methods can be reused with the witness method; conversely, it
is also possible to start from an existing graph-based method, and to check the
correctness of the decomposition with the witness method.

3.3 Example of a dependent system

Here is a simple example of a dependent system. In 2D, point O is the middle of
points A and B. Distance OC equals distance OA. AC and BC are orthogonal;
this last constraint results from the previous ones, due to this geometric theorem:
if C lies on the circle with diameter AB, then AC and BC are orthogonal.
Distance OA is specified with a parameter u. The system of equations is

e1 : 2xO − xA − xB = 0

e2 : 2yO − yA − yB = 0

e3 : (xC − xO)2 + (yC − yO)2 − (xA − xO)2 − (yA − yO)2 = 0

e4 : (xC − xA)(xC − xB) + (yC − yA)(yC − yB) = 0

e5 : (xA − xO)2 + (yA − yO)2 − u2 = 0

Fig. 2 displays the jacobian and a base of the free infinitesimal motions: three
displacements and a flexion, point C can rotate around point O. The rank of
e′
1
, . . . e′

5
is computed at the witness, it is 4, thus equations are dependent.

3.4 Minimal dependent set of constraints

If the constraints are dependent, interrogation of the witness makes possible to
find the smallest dependent set of constraints: this information is relevant for the
user, who can fix more easily the mistake in the system of constraints (remember
that constraints can be numerous). This problem reduces to finding the minimal
dependent set in a dependent set of vectors (they are the gradient vectors of
the equations at the witness). We assume that the rank of the dependent set
is its cardinal minus one: typically, the last vector we try to add in the base
reduces to the null vector. In such a case, the minimal dependent set is unique;
to find it, just try to remove each vector in the dependent set; if the set minus
this vector is still dependent, then remove this vector. This greedy method can
be proved with matroid theory.

3.5 Rigidity test

Is the system flexible? Just compute a base of the kernel of the jacobian,
at the witness: it is a base of the free infinitesimal motions of the witness. If
it contains vectors outside the base of the infinitesimal displacements, then the
witness (and the target) is flexible. For instance, in the classical configuration
of the double banana, the two bananas can rotate around the axis through their
two common vertices; the corresponding infinitesimal flexion is detected by the
method.

10

If the system is flexible, the witness method can provide a base of the in-
finitesimal deformations, and the set of maximal rigid subparts (well-constrained
modulo displacements), see below.

Is a part rigid? A flexible system can contain rigid parts. A part is described
by a subset Y of the unknowns. On tables, each variable corresponds to a
column, and a part Y is thus a subset of columns. The part Y is rigid iff the
vectorial space M [Y] (the free infinitesimal motions in the columns Y) is equal
to the vectorial space D[Y] (the free infinitesimal displacements in the columns
Y). Vectors generating M [Y] are obtained by taking only the columns Y in the
vectors of the base of M . Similarly for D[Y].

For instance, in the example of Fig.1, Y = {x, y, a, b, c, a′, b′, c′} is rigid,
though Y ∪{x′, y′} is flexible. It does not depend on the base chosen for M and
D.

Are A and B relatively fixed? A flexible system can fix some pairs of ge-
ometric elements (two points, two lines, one point and one line, etc) relatively
to each other. Actually, the previous section already provides a decision proce-
dure. A and B are relatively fixed by the (possibly flexible) system if the part
Y = A ∪ B is rigid.

3.6 Witnesses and probabilistic proofs

The witness makes possible to detect geometric coincidences: collinearity of 3
points, coplanarity of 4 points, parallelism, etc, which are due to geometric the-
orems (Pappus, Desargues, Pascal, etc) or to accidents. It permits probabilistic
proofs [Mar71, Sch80], in the following sense: when a coincidence is due to a
theorem, then the theorem is satisfied in the witness. It happens, very unlikely,
that the witness is not generic enough and has accidentally a property. Each
time a coincidence is detected, the test is performed again (modulo another
prime integer), to achieve a greater confidence. The probability of wrong pos-
itives is 1/p if computations are done modulo p (in practice P ≈ 109). With
k such independent tests, the probability is one over the product of the used
primes, say 109k. This kind of proofs can be made fully deterministic, with
exponential cost: no magy.

Suppose it is conjectured that C(X) = 0 is a consequence of the system
F (X) = 0. First check that the conjecture indeed holds in the witness, i.e.,
that C(XV) = 0. If not, the conjecture is clearly wrong. If C(XV) = 0, then
check that C(XV + εẊ) = 0 it is still true for all vectors Ẋ in the base of the
free motions of the system F (X) = 0 at the witness XV . Using Taylor as usual,
C(XV + εẊ) = C(XV) + εC ′(XV)Ẋt + O(ε2), thus the gradient vector C ′(XV)
must be orthogonal to Ẋ (in other words, C ′(XV) must lie in the vectorial
space spanned by the jacobian F ′(XV)). This protocol avoids to prove that all
parallelograms are rectangles (or squares) when the witness should only be a
parallelogram, and it is accidentally a rectangle (or a square).

11

B A

A

B B

A

Figure 4: A 2D rigid system of constraints. Removing a constraint creates a
flexible system with two MRP. In the 3 figures, the MRP(A,B) is in thick lines.

It is possible to consider terms in ε2, ε3 . . ., i.e., to compute series: XV +
εẊ+ε2Ẍ+. . . (in this wake, computer algebra uses Puiseux expansions to study
singularities). In our context, linear numerical algebra is still sufficient, but
Hessians are more space consuming than Jacobians. We do not investigate this
track. Maybe relevant informations can be extracted from Ẍ (accelerations).

4 Witness-based decomposition

The previous decision procedures (is a part flexible or rigid?) are sufficient,
when combined to any graph-based methods, to decompose systems. Notwith-
standing, this section provides the first decomposition method which relies only
on the witness, and which considers no graph at all. It considers only the array
of the jacobian and the base of free infinitesimal motions. It tries to get rid of
geometric considerations: it should make methods simpler and more general;
too much often, methods based on the geometric intuition get stuck in a morass
of geometric cases.

The witness-based decomposition method works as follows: if the configura-
tion is flexible, it finds its maximal rigid parts (MRP). If the configuration is
rigid, it removes each constraint in turn, to make it flexible. Some book keeping
avoids to find several times the same MRP.

4.1 Finding an anchor

An anchor Y ⊂ X is a part which is rigid and which has full DoD: the vecto-
rial space of its free motions is equal to the vectorial space of the infinitesimal
displacements (rank 3 in 2D, 6 in 3D); moreover the anchor has minimal car-
dinality, either in a geometric sense: the anchor is a set of geometric elements
(points, lines, planes), or in an algebraic sense: the anchor is a set of variables.
In both cases, these anchors are used as an argument for the procedure below,
computing the maximal rigid part containing an anchor.

In 2D, a geometric anchor can be two points the distance of which is fixed by
the system, but it can not be only one point. It can also be made of a line and
a non incident point. It can also be made of three secant non concurrent lines,
etc. In 3D, a geometric anchor can be 3 points, the three distances of which are
fixed by the system. It can not be a segment: we saw that the DoD of a segment
in 3D is 5, not 6. Clearly a configuration contains only a polynomial number of

12

geometric anchors. Every geometric anchor contains an algebraic anchor.
An algebraic anchor contains r = 3 variables in 2D, and r = 6 in 3D.

Clearly there is a polynomial number O(|X|r) of potential algebraic anchors
in the system with variables X (|X| is the cardinal of X). For example, in
2D, a possible anchor is the set of variables x1, y1, x2, iff the distance between
the points (x1, y1) and (x2, y2) is fixed by the system (directly, by a constraint
distance, or indirectly). Similarly, in 3D, a possible anchor is the set of variables
x1, y1, z1, x2, y2, z3 if the three distances are fixed (directly or indirectly) by the
system. The previous definition of algebraic anchors is geometrically counter
intuitive, since it breaks geometric elements into variables. Anyway, the MRP
method works for any kinds of anchors, and it will merge again broken geometric
elements (points, lines or planes).

4.2 Finding the maximal rigid part MRP(Y)

Assume the system F (X) = 0 is flexible, and that the given part Y is rigid and
has full DoD. Then Y is contained in a unique maximal rigid part, which has
variables R. R is computed with the following greedy method: initialize R with
Y , and for each variable x ∈ X − Y , if Y ∪ x is rigid, then insert x in R (the
test: if Y ∪ x is rigid, can be replaced by the test: if R ∪ x is rigid).

Remark: the algorithm for the MRP(Y) extends to find the maximal similar
part MSP(Y), i.e., the maximal part determined up to scaling and containing
a part Y determined up to scaling.

4.3 Finding all MRP

The set Ω of all maximal rigid parts is initialized to ∅. For all potential anchors
A, if A is not already included in a MRP in Ω, then insert MRP(A) in Ω. This
method works for both algebraic and geometrical anchors. The number of MRP
is polynomial: there is only one MRP per anchor, and the number of anchors
is polynomial. Thus this method is polynomial time. In passing, the number of
MRP is much smaller than the number of anchors.

5 Miscellaneous remarks

5.1 Infinitesimal displacements

There is another way to compute a base of infinitesimal displacements, which
requires less knowledge, and applies also for exotic systems of coordinates (for
instance Grassman-PlÃ 1

4
cker coordinates) not considered here. We only give the

principle, skipping details. Add geometric constraints to make the configuration
rigid; for example, for two points A and B which are distant by l in the witness,
add the constraint: (A − B).(A − B) − l2 = 0 (replacing l2 by its numerical
value in the witness). The fact that the augmented system is redundant does
not matter. When the augmented system is rigid, compute a base of the kernel
of its jacobian; it contains only displacements. If the base has not the good

13

rank (6 in 3D, 3 in 2D), the initial system is wrong; for instance, an initial
equation depends on the coordinate system, or the system does not fix some
non geometric unknowns.

5.2 Triangular inequalities

It can happen that the system has a witness and the solver finds no real solution.
When the solver is complete (for instance, it is an interval based solver, which
finds all existing real solutions), it means that the parameters of the system
have bad values; for instance they violate a triangular inequality. Detecting
which inequalities are violated by parameters is a problem of Real algebra and
Real geometry; this kind of problems are theoretically solvable after Tarski, but
untractable because of complexity.

5.3 Generating witnesses; which difficulty?

For the molecule problem, finding a witness is completely trivial: just generate
random points, in 2D or in 3D, according to the problem. For general geometric
constraints (including incidences), we can often use a dual method for generat-
ing a witness, for instance when the unknown configuration is a 3D polyhedra
described by the length of its edges.

The octahedron problem, solved by Durand and Hoffmann, also known as
the Stewart platform, and the icosahedron problem are just molecule problems:
they have triangular faces, so generating random vertices is sufficient; the fact
that the generated polyhedon is likely concave and even self intersecting does
not matter, as far as the distance and coplanarity conditions are satisfied.

The hexahedron (6 quadrangular planar faces) or the dodecahedron (12 pen-
tagonal planar faces) are examples of systems of geometric constraints, where
the dual method works: generate random planes in 3D, one random plane per
face, before computing the resulting vertices as intersection points of the sup-
porting planes; it provides a witness. This method for generating a witness
clearly relies on the fact that each vertex of the hexahedron and of the dodeca-
hedron is degree 3. For vertices with greater degree, the method will not work,
because there is a probability 0 for four (or more) random planes to meet in a
common point.

Here, the good news is Steinitz’s theorem [RG96]: all 3D polyhedra are
realizable with rational numbers, and thus with integers (just multiply by the
gcd of all denominators); it is worth to mention that, in contrast, 4D polyedra
are not all realizable with integer coordinates [RG96]; thus we are lucky to live
in a 3D space. Steinitz’s theorem confirms the intuition that, when choosing
a good set of base points and assigning them integer coordinates, finding the
coordinates for the other points reduces to solving a linear system of equations.
Admittedly, Steinitz’s theorem and this intuition are only plausible arguments
for feasibility, and not an algorithm; this is future work.

Sometimes, we need a bit more than a polytope for the witness and the
target, something like several related polytopes, or a partially specified arrange-

14

ment (i.e., a set of point-line or point-plane incidences). Due to the universality
theorem, finding a realization (with integers or not) can be arbitrarily difficult,
even in 2D. Up to now, we were always able to find a rational witness (the
counter-example in [FMJ05] is not relevant fo r CAD-CAM), so we conjecture
that difficult problems are not relevant for CAD-CAM, and that it is even easy
to find a rational witness. It is fair to admit we did not consider problems of
industrial size. The complexity of finding witnesses for CAD-CAM problems is
an open issue.

5.4 Understanding equations

This paper assumes as usual that the geometric constraints and the system of
equations are both available, i.e., for each unknown in the system of equations,
we know its semantic, for instance that it is the ordinate of such point. The
two related questions:

- is it possible to decompose a system of equations, given the equations and
a witness, without an a priori knowledge of the geometric constraints and of the
meaning of the variables?

- is it possible to reconstruct geometric constraints from the system of equa-
tions only (a kind of reverse engineering) and a witness?
have not been posed so far. In other words, is it possible to ”understand”
equations? Assume the answer to both questions is positive. Then we can pro-
vide more powerfull solvers which accept as input systems of equations, rather
than systems of constraints; systems of equations are much easier to standardize
than systems of geometric constraints; actually MathML already does the job.
Maybe also that decomposition methods would apply to more general systems
of equations? To suggest that the underlying problem is relevant, and per-
haps feasible, consider the problem of reconstructing geometric constraints and
meanings of unknowns from a system of algebraic equations and a witness, in
the 2D case, and when the system is rigid. We observe that, whatever the com-
puted base for infinitesimal free displacements, D[u1 . . . , v1 . . . , a1 . . . , b1 . . .] has
rank 1; D[x1 . . . , y1 . . .] has rank 2; for non geometric unknows t1 . . ., the rank
of D[t1 . . .] is 0. This makes possible to recover the meaning of each variable
(up to symmetries, such as the symmetry between x and y).

6 Conclusion

Graph-based methods for decomposing systems of eqautions or constraints have
intrinsic and unavoidable limitations; the witness method overcomes succesfully
these limitations. This paper simplifies and generalizes the witness method. It
makes arise two questions.

For CAD-CAM problems, is there always, or most of the time, a witness with
rational coordinates? When a witness has rational coordinates, it is possible
and cheap to perform exact computations in the rationals or modulo some finite

15

field, and this avoids the inaccuracy of the floating point arithmetic –and the
excessive cost of algebraic (non rational) arithmetics.

Given only a system of equations and a witness, is it possible to ”understand”
the system of equations, i.e., to extract its relevant properties and use them to
decompose and solve it? We feel the witness method can still be simplified, and
generalized to other kinds of invariance, at least to invariance modulo scaling,
and modulo homography. Several things (for instance the duality between the
maximal rigid part and the minimal dependent system) suggest that there is a
deeper, simpler and more powerful theory for decomposition.

References

[BR98] Bruderlin B., Roller D. (Eds.): Geometric Constraint Solving
and Applications. Springer-Verlag, 1998.

[CH88] Crippen G. M., Havel T. F.: Distance Geometry and Molecular
Conformation. Research Studies Press, Taunton, U.K., ISBN 0-86380-
073-4, 1988.

[FMJ05] Foufou S., Michelucci D., Jurzak J.-P.: Numerical decomposi-
tion of geometric constraints. In ACM Symp. on Solid and Physical
Modelling (2005), pp. 143–151.

[Hen92] Hendrickson B.: Conditions for unique realizations. SIAM J. Com-
puting 21, 1 (feb 1992), 65–84.

[Hof06] Hoffmann C. M.: Summary of basic 2d constraint solving. Inter-
national Journal of Product Lifecycle Management 1, 2 (2006), 143 –
149.

[JG93] J. Graver B. Servatius H. S.: Combinatorial Rigidity. Graduate
Studies in Mathematics. American Mathematical Society, 1993.

[JNT03] Jermann C., Neveu B., Trombettoni G.: Algorithms for iden-
tifying rigid subsystems in geometric constraint systems. In IJCAI
(2003), pp. 233–238.

[Mar71] Martin W.: Determining the equivalence of algebraic expressions by
hash coding. J. ACM 18, 4 (1971), 549–558.

[Owe91] Owen J.: Algebraic solution for geometry from dimensional con-
straints. In Proc. of the Symp. on Solid Modeling Foundations and
CAD/CAM Applications (1991), pp. 397–407.

[Owe96] Owen J.: Constraint on simple geometry in two and three dimensions.
Int. J. Comput. Geometry Appl. 6, 4 (1996), 421–434.

[RG96] Richter-Gebert J.: Realization Spaces of Polytopes. Lecture Notes
in Mathematics 1643, Springer, 1996.

16

0 a b a+b
b

0

a
a+b

Infini

Figure 5: Affine and projective construction of a + b.

infinity

1

0

ab

b
a

a b ab10

Figure 6: Affine and projective construction of a × b.

[Sch80] Schwartz J.: Fast probabilistic algorithms for verification of poly-
nomial identities. J. ACM 4, 27 (1980), 701–717.

7 Appendix

7.1 The universality theorem

The algebraic constraint : z = x+y can be translated into a set of geometric con-
straints in the Euclidean plane between points and lines : point-line incidences
and constraints of parallelism between lines, with the geometric construction
shown in fig. 5. Similarly for the algebraic constraint: z = x × y, with the ge-
ometric construction shown in fig. 6. Actually, parallelism constraints between
lines reduce to point-line incidence constraints too, introducing an auxiliary and
arbitrary line, called the line at infinity by Desargues: the constraint: lines l and
l′ are parallel, is replaced by the constraint: lines l, l′, and the line at infinity
concur. Then every algebraic system can be translated into a set of point-line
incidence constraints: coefficients, unknowns, monomials, polynomials are all
represented by points on a given line; from two arbitrary, distinct, basic points
0 and 1 on this line, all points representing an integer n (for instance a coefficient
in the algebraic system) can be built with O(log n) constraints, using iterated
squaring. Iterated squaring is also used to generate the constraints involving
monomials. This guarantees that the system of point-line incidences and the
algebraic system have a bit size of the same magnitude.

7.2 Some geometric theorems

This appendix lists some geometric theorems which confuse graph-based meth-
ods (for the moment, no theorem is known which confuses the witness method).

17

Desargues theorem holds in 2d and in 3D. If two triangles p1p2p3 and q1q2q3

are perspective (i.e., the three lines piqi concur), then the three intersection
points rij = pipj ∪ qiqj are aligned.

Pappus theorem: in 2D, if points p1, p2, p3 are aligned, as well as q1, q2, q3,
the three intersection points r12, r23, r13 where rij = piqj ∩ pjqi are aligned as
well.

Pappus dual theorem: two triangles which are perspective in two ways are
perspective in three ways.

Pascal theorem, or Pascal mystical hexagram: in 2D, if points p1, p2, p3, q1, q2, q3

lie on a common conic, then the three intersection points rij = piqj ∩ pjqi are
aligned. Tersely: the opposite sides of an hexagon inscribed in a conic meet
on three aligned points. Pappus is a consequence of Pascal: two lines are a
degenerate conic.

Brianchon theorem is the dual of Pascal theorem. When a conic is inscribed
in an hexagon, the three diagonals of the hexagon concur.

Hexamys theorem: an hexamys is an hexagon, such that the opposite sides
meet on three aligned points. Then every permutation of an hexamys is an
hexamys. It is a reformultation of Pascal theorem.

Chasles theorem: if points p1 . . . p9 are the 9 intersection points between
two cubic curves without a common component, then every cubic curve passing
through 8 of 9 points also passes through the 9th one.

The three quadrics theorem: if p1, . . . p8 are the eight intersection points be-
tween three quadrics (without pairwise common component), then every quadric
through seven of these eight intersection points also goes through the 8th one.

Beltrami theorem: in 3D, assume that three black non pairwise coplanar
lines bi cut three white non pairwise coplanar lines wj in 9 points. Then every
line cutting the three black lines and every line meeting the three white lines
are coplanar (i.e., meet).

7.3 The molecule problem

In the molecule problem [JG93, Hen92, CH88], the sole geometric constraints
are distances between points. When these distances are generic, the combi-
natorial characterization of rigidity (well-constrainedness modulo isometry, or
displacement) is known for the 2D case: it is Laman’s theorem. It states that
a system of c point-point distances in 2D, between n points, is well-constrained
modulo displacement iff c = 2n− 3 and there is no over-constrained subsystem,
i.e., no subsystem of n′ points and c′ distance constraints where c′ > 2n′ − 3.
Though there is an exponential number of subsystems to test, several polyno-
mial time methods were proposed [JG93, Hen92]. Graph-based decomposition
methods used in GCS are clearly extensions of these methods.

The extension of Laman’s theorem to 3D (replacing 2n− 3 by 3n− 6) gives
a necessary condition for rigidity, but it is not sufficient. The double banana is
probably the most famous counter-example. The combinatorial characterization
of rigidity in 3D and beyond is today an active research area in combinatorics,
especially matroid theory; though this characterization is still unknown, there

18

is a classical numerical and probabilistic method to test rigidity, in polynomial
time (in cubic time): it is the witness method. The correctness of the witness
method for the molecule problem is Gluck’s theorem [JG93]. For the molecule
problem, finding a witness is completely trivial: just generate random points.
The genericity condition prevents collinearity, coplanarity, cocyclicity, etc. This
condition is essential for rigidity theory; otherwise non generic distances enable
incidence constraints and the universal theorem applies. Unfortunately, this
condition is incompatible with CAD-CAM applications.

19

